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Abstract. Autoencoder models of source code are an emerging alterna-
tive to autoregressive large language models with important benefits for
genetic improvement of software. We hypothesise that encoder-decoder
architectures that are currently standard in both natural and machine
language processing are suboptimal for source code because they ignore
the grammatical structure of programs that can be trivially and robustly
derived with an Abstract Syntax Tree, AST, parser. We propose a struc-
tured Variational Auto-Encoder, VAE, based on Child-Sum TreeLSTM
that operates directly on the AST of the program. We train it, along
with a baseline sequence VAE, on a dataset of competitive programming
submissions and find that the structured model demonstrates better per-
formance in most tests, with some notable exceptions.3

Keywords: deep learning, machine learning on source code, autoencoder mod-
els, foundation models

1 Introduction

1.1 Foundation models for code

The paradigm of foundation models [1] has recently been very prominent in
machine learning and machine learning on source code is no exception. In this
paradigm, a model is first trained on a large dataset to solve a generic task
such as next-token prediction and then used as a central component in solutions
of various specific tasks. The foundation models for source code, based on ar-
chitectures such as GPT Codex [2–5] and BERT [6, 7] have enabled significant
process in tasks like programming by example [8,9] and even human-comparable
performance in coding competitions [10].

? This work was paritally funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement n° 812882. This work is part
of ”Personal Health Interfaces Leveraging HUman-MAchine Natural interactionS”
(PhilHumans) project

3 See tree2tree.app for a demo. The model is downloadable at https://github.

com/sander102907/autoencoder_program_synthesis.
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https://github.com/sander102907/autoencoder_program_synthesis
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1.2 Autoencoder genetic programming

While undoubtedly useful in many program synthesis tasks, popular founda-
tion models may fall short in the areas of genetic programming [11] and genetic
improvement of software [12]. In this settings, new programs are found by ex-
ploring the space of programs similar to one or several reference programs. The
task of applying these perturbations to programs could benefit from a founda-
tional model, however, it’s unclear how to achieve this with the current autore-
gressive models. Autoencoder Genetic Programming [13–15] argues for using
autoencoder [16] models instead. These models embed programs into a high-
dimensional vector space, making it easy to mutate a program by add random
noise to the embedding vector or combine several programs by averaging their
embedding vectors.

1.3 Structural language models of code

Unlike natural languages, programming languages are easier to represent struc-
turally due to the nature of their syntax which improves machine learning per-
formance. Prior work on structural code encoding [17,18], structural code decod-
ing [19, 20] and structural encoder-decoder models for machine translation [21]
suggests that models that operate directly on the tree structure of the program
can achieve better performance than models that operate on a sequence of to-
kens.

To the best of our knowledge, however, the advantage of structural models
has not been tested in autoencoders for genetic programming. [22, 23] find that
it is beneficial to include grammatical metadata in token representations for
a traditional sequence model, but do not employ a tree-based encoder-decoder
architechure.

Thus the research question we set out to answer is: would an model that
operates directly on the program’s Abstract Syntax Tree learn a better latent
representation of the source code than a model that operates on a sequence of
tokens?

2 Proposed architecture

2.1 Autoencoder type

We have chosen to use a variational autoencoder [24] since, unlike its non-
stochastic counterpart,it is less dependent on choosing the right size of the latent
vector, since the Kullback Leibner component encourages the model to use as
small of a subspace of the latent space as it can. Our experiments do, however,
indicate that the choice of latent dimension is still important.

2.2 Encoder

The encoder network aims to capture the most relevant information in a program
and map it to a smaller representation.
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Embedding layer The first layer of the encoder network convert tokens into dense
representations, which can be either initialized randomly or initialized with pre-
trained parameters and then fine-tuned further.

Tree-LSTM We employ the Child-Sum Tree-LSTM [25] which is defined as fol-
lows. Given some tree, we can denote the set of children of a node y as C(y) and
the vector representation of the node as xy. The transition equations between
the different Tree-LSTM are the following:

hy
∗ =

∑
z∈C(y)

hz (1)

iy = σ(Wi · xy + Ui · hy
∗ + bi) (2)

fyz = σ(Wf · xy + Uf · hz + bf ) (3)

oy = σ(Wo · xy + Uo · hy
∗ + bo) (4)

uy = tanh(Wu · xy + Uu · hy
∗ + bu) (5)

cy = iy � uy +
∑

z∈C(y)

fyz � cz (6)

hy = oy � tanh(cy) (7)

In eq. (4), z ∈ C(y) and � denotes the element-wise product (Hadamard
product), whereas σ and tanh refer to elementwise sigmoid and hyperbolic tan-
gent. W , U and b denote trainable parameters of the model. Note that node y
depends on the hidden states of all of the children C(y), in other words, the
computation order of the Tree-LSTM is bottom-up. Just like with the standard
LSTM model, Tree-LSTM can be stacked to create a multilayer Tree-LSTM. In
such a multilayer architecture, the hidden state of a Tree-LSTM unit in layer
l is then used as input to the Tree-LSTM unit in layer l + 1 in the same time
step, the same as with the standard LSTM [26]. The idea is to let higher layers
capture longer-term dependencies of the input. In the case of Tree-LSTMs, this
translates to capturing longer-term dependencies along the paths of a tree.

Neural attention Tree-LSTM layers are followed by an attention layer. The node
importance calculation is based on [27], and updates the hidden states as follows:

hat = h · tanh(W · h + b) (8)

Here, h denotes the hidden states of the last Tree-LSTM layer. This additional
layer allows the network to prioritize nodes that contain the most information.

Pooling The last step in the architecture is the pooling layer responsible for
compressing the sequence of hat into a fixed size vector. We rejected a common
[28] approach of only taking the last hidden state of the RNN as the input to
the decoder due to the long-term memory loss problem [29] and use max pooling
instead, see figure fig. 1.
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Fig. 1: Top: Typical architecture of encoder model of VAE in which only the
last hidden state from the RNN is used to compute the mean u and variance
σ2. Bottom: A pooling method to aggregate the hidden states from the RNN
to compute the mean u and variance σ2.

Sampling latent code The pooled vector is then used to compute the mean and
variance of the approximate posterior to sample a latent code z with the help
of the reparametrization trick [24]. The mean and variance are computed using
linear layers that learn a set of weights and biases.

2.3 Decoder

The goal of the decoder network is to reconstruct a given input as accurately as
possible, given the latent code produced by the encoder.

Tree decoding We use the same tree structure for decoding as we used for encod-
ing. Having a reversed order of the input sequence compared to the reconstructed
sequence has been shown in [28] to improve the performance of the model. We
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employ this technique in our model, which means that since our encoder pro-
cesses trees bottom-up, the decoder will produce trees top-down. The idea here
is that the first steps of decoding the tree are more related to the latent space
than the last steps.

A method called the doubly-recurrent neural network (DRNN) [30] allows for
top-down tree generation from an encoded vector representation. This method
operates solely on the vector representation and does not require that either the
tree structure or the nodes are given. The DRNN is based on two recurrent neural
networks, breadth and depth-wise, to model ancestral and fraternal information
flow. For some node y with parent pa(y) and previous sibling s(y), the ancestral
and fraternal hidden states are computed as follows:

hy
a = rnna(hpa(y)

a , ipa(y)) (9)

hy
f = rnnf (h

s(y)
f , is(y)) (10)

Where rnna, rnnf are functions that apply one step of the ancestral and
fraternal RNNs, respectively. Furthermore, ipa(y), is(y) are the input values (label
vectors) of the parent and previous sibling respectively. After the ancestral and
fraternal states of y have been computed with the observed labels of its parent
and previous sibling, these states can be combined to form a predictive hidden
state:

hy
pred = tanh

(
(Wa · hy

a + ba) + (Wf · hy
f + bf )

)
(11)

Where the operations applied to hy
a, hy

f are linear layers with learnable
weights and biases. This combined state then contains information about the
nodes’ surroundings in the tree.

For each node in the tree, the model needs to decide whether it has offspring
and whether it has any successor siblings. We can use the predictive hidden
state of a node hy

pred, with a linear layer and a sigmoid activation to compute
the probability for offspring and successor siblings as:

pya = σ(Wpa · hy
pred + bpa) (12)

pyf = σ(Wpf · hy
pred + bpf ) (13)

During training, we use the actual values for whether a node has children and
successor siblings. During inference, we can either greedily choose any confidence
level to continue creating offspring and succeeding siblings by checking whether
the probability is above some threshold or sample this choice.

Besides topological predictions, the model should also predict the label of
each token. Again the predictive hidden state can be used for label prediction
as follows:

oy = softmax
(
Wo · hy

pred + bo

)
(14)
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Tree decoding optimizations Now that we have the basic DRNN model [30] in
place to generate a tree from scratch using a latent vector, we can optimize it
for our use case.

The first issue is the possibly infinitely large vocabulary that source code al-
lows. Since progam behavior is invariant to identifier replacement we map each
unique identifier to a reusable ID [31] and treat the prediction of identifiers as
a clustering problem between declarations and references. We use the predic-
tive hidden states of the nodes to learn relationships between declarations and
references.

The model can keep track of a list of the declared identifiers while generating
an AST. Each time a new identifier is declared, a new reusable ID is added to
the list. Then for each reference, we can compute the similarity to each of the
declared identifiers using some similarity function and predict the most similar
identifier. We can keep track of what type of node we are currently trying to
predict due to the AST structure and because we have access to the parent node
label, i.e., the parent node indicates whether the child node is a declaration
or reference. Let D be the set of currently declared identifier nodes and y be
the current reference node we are trying to predict, the most similar declared
identifier can be computed as follows:

syz = similarity(Wc · hy
pred + bc,Wc · hz

pred + bc) (15)

ry = min
z∈D

(syz) (16)

We have a similar problem for literal tokens; developers can use an almost
infinitely large number of unique literals in source code. However, in contrast to
identifier tokens, literal tokens influence the functionality of a program. There-
fore, to assure that generated programs are still compile-able, we cannot remap
the literal tokens to reduce the token count. For example, we cannot map rarely
used literals to special unknown tokens, as unknown tokens create compiler er-
rors. Instead, we can employ adaptive softmax [32] to use a vocabulary consisting
of many unique literal tokens without a considerable increase in computational
complexity.

We have identifiers and literals as token categories already, but we can also
categorize the leftover tokens into the following categories:

– Reserved tokens: for, if, while, ...
– Types: int, long, string, ...
– Built in function names: printf, scanf, push, ...

In total, the five categories cover all the different tokens of the programming
language (at least for C++). The reason for splitting up the leftover tokens
into more categories is to predict these categories separately based on their
parent node. For example, this ensures that we do not input a type-token in
the tree, where there should be a reserved token. The categorization improves
the compilation rate of the generated programs by allowing the model only to
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predict tokens of the correct token category. The tree-structured representation
during decoding allows us to use this optimization technique. For the reserved
tokens, type, and built-in function names, eq. (14) is used for label prediction,
as there is only a limited number of unique tokens in these categories.

To allow for the categorized label predictions, we need to add one more
element to the DRNN model. An essential aspect of the tree structure is that
identifiers, built-in function names, and literals occur in the leaves of the trees.
Hence if a node has offspring, the category of the current node must be a reserved
token. However, if a node has no offspring, it can be either of the categories, and
we need to somehow decide which category to predict a label for. Note that a
reserved token can also be on a leaf node on the tree. For example, consider an
empty return statement. For that reason, similar to the topology predictions, we
have the model predict whether a node is of the reserved token category or not.
This prediction is computed in the same way as the topology predictions using
the predictive hidden state of the node as follows:

pyr = σ(Wpr · hy
pred + bpr) (17)

Add gate The DRNN model has a large flaw, where it is not able to differentiate
between paths with the same prefix. For example, consider the situation depicted
in fig. 2, where we have two function declarations named ‘add’ and ‘main’. Due
to the information flow downwards, both name nodes have the same hidden state
and the model is not able to distinguish the leaf nodes and will therefore predict
the same label for both. This issue is depicted in the left image of fig. 2. To solve
this issue, we would like to incorporate the fraternal states in the downwards flow
for the model to learn to differentiate the paths downwards. Hence we would like
to revise eq. (10), where we take inspiration from the LSTM model and apply
the idea of the add gate to our ancestral update formula as follows:

my
f = σ(Wm · hy

f + bm) (18)

ayf = tanh(Wa · hy
f + ba) (19)

hy
a = hy

a + (af ∗mf ) (20)

This update to the fraternal state is applied after predicting the label for
node y, which is depicted in the right image of fig. 2. Here, ayf is the value of the
transformation on the previous sibling state that should be added to the parent
state, where the tanh transforms it between -1 and +1 to mitigate exploding
gradients. Furthermore, my

f decides which elements should be added using a

sigmoid function that outputs values between 0 and 1. By multiplying ayf with

my
f , the model can learn to decide what and how much to add from the previous

sibling state to each parent state’s element to help predict the next steps of the
tree.
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Fig. 2: DRNN expanded with an add gate to allow for information flow from
previous siblings downwards

2.4 Optimization

Mitigating KL vanishing KL vanishing is a common issue when dealing with
VAEs with a decoder parameterized by an auto-regressive model. We mitigate it
vanishing using cyclical KL cost annealing [33]. Furthermore, we apply pooling
to the hidden states of the RNN network in the encoder. Long et al. [34] show
this pooling method can effectively prevent the posterior collapse issue.

Loss function Predicting whether a node has offspring and successor siblings
are binary choices, so we can use binary cross-entropy to compute the loss for
predicting the topology of the AST. Let ay, fy represent the actual values of
having offspring and successor siblings for node y, the topological losses for this
node are then computed as follows:

La(y) = −ay · log(pya) + (1− ay) · log(1− pya) (21)

Lf (y) = −fy · log(pyf ) + (1− fy) · log(1− pyf ) (22)

where La, Lf denote the ancestral and fraternal loss respectively. Because the
reserved token category prediction (eq. (17)) is so similar to the topological
predictions, the loss for that component can be defined in a similar fashion:

Lr(y) = −ry · log(pyr) + (1− ry) · log(1− pyr) (23)

where we define ry to represent the actual value of node y being in the reserved
token category.

Label prediction is a classification problem for all label categories, except
the identifiers. Hence, we can compute the cross entropy loss (or negative log
likelihood):
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Ll(y) = − log(oy[ly]) (24)

where we assume that ly is the index of the true label, and hence oy[ly] retrieves
the softmax value at the index of the correct class.

Lastly, since predicting the labels of identifier (reference) tokens is treated
as a clustering problem, we can use triplet loss [35]. To compute the loss of a
reference node y, we select the true declaration node z and sample a negative
declaration node x; the loss is then defined as follows:

Li(y) = max(syx − syz, 0) (25)

We can then combine all of the separate components to form a single reconstruc-
tion loss function for a node:

Lrec(y) =


La(y) + Lf (y) + Lr(y), if y is a declaration

La(y) + Lf (y) + Lr(y) + Li(y), if y is a reference

La(y) + Lf (y) + Lr(y) + Ll(y), otherwise

(26)

Because the loss is decoupled, this allows us to weigh the objectives differ-
ently to emphasize, for example, topology or label prediction accuracy. We leave
experimenting with different weights for objectives as future work.

The total loss function, combining the KL divergence, KL weight w and
reconstruction loss becomes:

L(N) = Ltot rec(N) =
∑
y∈N
Lrec(y)− w ·DKL (Q(z|N)||P (N)) (27)

During training, we perform teacher forcing, technique that is commonly used
with sequence generation.

3 Evaluation

3.1 Dataset

We train and evaluate our model on a dataset of programs from code competition
websites. Programs from these platforms exhibit a few qualities that are suitable
for program synthesis. The programs are tested and known to be syntactically
correct and compile-able, and they are standalone code fragments and do not
depend on any code that is not built into the programming language. The dataset
consists of almost two million C++ programs across 148 competitions divided
over 904 problems.

The programs in the data set are generally structured to contain a main
function, standard input and output stream elements, computation and memory
optimizations, and possibly some other elements such as helper functions/classes.
Due to this general structure, the programs tend to overlap in their content, in
contrast to, for example, natural language sentences.
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Fig. 3: Tree to tree autoencoder overview. First Fig.: The piece of code consid-
ered. Second Fig.: The piece of code parsed to an AST tree format. Third Fig.:
The order in which the encoder module encodes the tree structure bottom-up.
Here, hc indicates the hidden state that travels from a child to a parent. Fourth
Fig.: The order in which the decoder module decodes the tree structure top-
down. Here, hp indicates the hidden state that travels from a parent to a child,
and hs indicates the hidden state that travels from a node to its successor sibling.

3.2 Baseline

Our method is compared to a baseline inspired by autoencoders used for text
generation in natural language. We can also evaluate how well these models
generalize to source code synthesis by taking inspiration from natural language
models. The model architecture is inspired from [36]. In this architecture, both
the encoder and decoder networks contain single-layer recurrent neural networks.
A Gaussian prior is used for the regularization of the latent space. The model
operates on the original sequences of source code and decodes the latent vec-
tor back to the source code without an intermediate structured representation.
Therefore we refer to the baseline model as the Sequence-to-Sequence (Seq2Seq)
model, and the architecture is depicted in fig. 4.

Fig. 4: The architecture of the Seq2Seq model

Similar to our proposed autoencoder model, we employ methods to mitigate
KL-vanishing. Again, we use cyclic KL annealing [33], and we combine this with
a technique called word dropout [36] to weaken the decoder.

We use three-layered LSTMs in the encoder and decoder with a recurrent
dropout rate of 20% to reduce over-fitting. The embedding layer is initialized
with Glove wiki gigaword 50 [37] embedding. We train the model using the Adam
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optimizer [38] with a learning rate of 1e− 3 and 10 epochs with early stopping
and a patience of 3. We train and run the experiments on GPUs with a batch
size set to 32.

3.3 Reconstruction results

First of all, we look at how accurately the autoencoders can reconstruct pro-
grams. We use a separate test split containing around 60.000 samples of our
data set to evaluate this and use these samples as input for the autoencoders.

We compute BLEU scores [39] for both models on the original representation
of the source code to obtain comparable results, i.e., we do not use the tree repre-
sentation. The Tree2Tree model thus has an extra step to use the data parser to
transform the tree representation back to source code. This extra step is disad-
vantageous for the Tree2Tree model as it may introduce some errors due to im-
perfections in the parsing process. The BLEU scores are then computed on each
token in a program: keywords, identifiers, operators, and special symbols such
as semicolons or braces. We report on the cumulative BLEU-1 through BLEU-4
scores to indicate the overlap between original and reconstructed programs. Fur-
thermore, we present the percentage of reconstructed programs that compile to
indicate how well the models have learned the programming language’s syntax.
We experiment with different combinations of latent sizes l and hidden RNN
dimensions h: (l:10, h:50), (l:50, h:100), (l:100, h:200), (l:150, h:300), (l:300,
h:500), (l:500, h:800), (l:800, h:1200).

We use greedy decoding in reconstruction experiments (table table 1) to max-
imize accuracy. In contrast, sampling is used in generation tasks where diversity
of candidates can be helpful.

The results listed in table 1 show the superiority of the Tree2Tree model in
terms of reconstruction capability (BLEU scores), especially for smaller latent
sizes. The reconstruction scores of the Tree2Tree model of latent size 150 out-
perform all the Seq2Seq models up to latent size 800. In contrast, the Seq2Seq
models show to perform much better at constructing compile-able programs,
which improves with the model’s size, to nearly 100%. This is a surprising re-
sult, which is investigated in more detail in section 3.

An interesting result is that the performance of the models does not neces-
sarily increase with the size of the model. Especially for the Tree2Tree models,
we see that after latent size 150, the models’ performance decreases. In general,
one would expect that the model would perform better with an increase in latent
size, allowing more information flow between the encoder and decoder. We hy-
pothesize that, because not only the latent size increases but also the number of
hidden units in the auto-regressive models, the models experience KL vanishing.
Due to the increasing hidden units, the auto-regressive models become stronger
and may depend more on their predictions, ignoring information from the latent
vector. In turn, the reconstruction performance vastly decreases. Confirmation
of this hypothesis is left as a venue for future work.

Next, we would like to experiment on how different input sizes affect the
performance of both models. Due to the tree-structured representation used by
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Latent BLEU-1 BLEU-2 BLEU-3 BLEU-4 Compiles

Seq

10 0.037 0.024 0.017 0.013 0.000%

50 0.085 0.061 0.047 0.037 42.467%

100 0.295 0.225 0.176 0.141 65.808%

150 0.278 0.211 0.165 0.131 66.971%

300 0.346 0.262 0.203 0.161 60.651%

500 0.421 0.332 0.263 0.211 90.329%

800 0.429 0.329 0.253 0.195 91.784%

Tree

10 0.445 0.339 0.260 0.202 28.375%

50 0.417 0.317 0.242 0.189 23.256%

100 0.423 0.323 0.251 0.200 30.429%

150 0.486 0.382 0.302 0.243 35.419%

300 0.457 0.342 0.260 0.202 35.054%

500 0.398 0.301 0.230 0.178 36.022%

800 0.258 0.182 0.131 0.096 2.358%

Table 1: Reconstruction results.

the Tree2Tree model, the size of the sequences that the RNNs process scale
proportionally to the width and depth of the tree. The Seq2Seq model, on the
other hand, processes sequences left to right, hence the number of computations
of the RNNs scale directly with the sequence length.

To evaluate the performance on different sized inputs, we split the test data
set into three subsets. A small, medium and large subset with the following
properties:

– small subset: maximum of 250 tokens
– medium subset: between 251 and 500 tokens
– large subset: between 501 and 750 tokens

We compute the BLEU scores and compilation percentage again using greedy
decoding on the smaller subsets for the best performing Seq2Seq and Tree2Tree
models, based on the results of table 1. Here, performance is based on the com-
bination of BLEU-4 and compilation percentage. For Seq2Seq, this is the model
with latent size 500. Similarly, for Tree2Tree, this is the model with latent size
150. The results are depicted in table 2.

From table 2 we can observe that both models follow the same logical trend:
the larger the input size, the lower BLEU-scores and compilation percentages.
For the Tree2Tree model, the BLEU scores for the medium subset seem to be
similar to the BLEU scores on the entire test set, whereas, for the Seq2Seq
model, the BLEU scores are much lower on the medium subset. The models
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Input BLEU-1 BLEU-2 BLEU-3 BLEU-4 Compiles

Seq

small 0.513 0.403 0.321 0.258 95.334%

medium 0.306 0.244 0.192 0.153 86.812%

large 0.196 0.157 0.123 0.096 87.971%

Tree

small 0.633 0.516 0.424 0.355 59.022%

medium 0.478 0.371 0.289 0.229 21.241%

large 0.324 0.242 0.181 0.138 5.001%

Table 2: Reconstruction results of the best models on different input sizes.

seem to be fairly close in terms of performance degradation from small to large
program sizes. For example, we can measure performance degradation for the
large versus small subset by dividing the BLEU-4 scores on the large set by the
BLEU-4 score on the small set. For the Seq2Seq model, we get a score of 0.372,
and for the Tree2Tree model, we get 0.389. Similarly, we get 0.593 and 0.645 for
the Seq2Seq and Tree2Tree model for the medium versus small subset. While the
performance degrades less with increasing input sizes for the Tree2Tree model,
this difference is insignificant.

An issue with the aforementioned computation of performance degradation is
that it does not correct for elements in programs that are almost always present.
For example, each program contains a main function, with standard input and
output streams. The models may simply always predict these standard elements
of a program and then use the information of the encoder to complete the details
of the program. However, this causes the BLEU score to consist of two parts:
the score for the prediction of the elements that are always present and the score
of what it has learned to predict together with the encoder. The latter is more
interesting and shows how much information can be saved in the latent vector.

Therefore, we apply a correction on the BLEU scores to focus on the pre-
diction based on the information in the latent vector. We compute corrected
scores by feeding the decoder with random latent vectors and computing BLEU
scores on the subsets of the test data set. Then, we subtract these correction
scores from the computed BLEU scores in table 2, and take 0 if the result of
the subtraction is negative. The corrected BLEU scores including the correction
scores are presented in table 3.

Table 3 indicates a large difference in performance degradation between the
Seq2Seq model and the Tree2Tree model. A noticeable result is that the cor-
rected BLEU scores for large programs predicted by the Seq2Seq model are 0.
Hence, the Seq2Seq model extracts no information from the latent vector at all
for large programs. Similarly, for medium-sized programs, little information is
transferred between the encoder and decoder. We can again compute the per-
formance degradation scores for the Seq2Seq model, which are 0.280 and 0.00
for the medium versus small and large versus small subsets, respectively, on the
corrected BLEU-4.
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Model Input size BLEU-1 BLEU-2 BLEU-3 BLEU-4

Seq2Seq

small 0.072 (0.441) 0.077 (0.326) 0.075 (0.246) 0.070 (0.188)

medium 0.006 (0.300) 0.018 (0.226) 0.021 (0.171) 0.023 (0.130)

large 0.000 (0.213) 0.000 (0.166) 0.000 (0.128) 0.000 (0.099)

Tree2Tree

small 0.200 (0.433) 0.220 (0.296) 0.223 (0.201) 0.218 (0.137)

medium 0.148 (0.330) 0.147 (0.224) 0.146 (0.150) 0.128 (0.101)

large 0.102 (0.222) 0.090 (0.152) 0.079 (0.102) 0.070 (0.068)

Table 3: Corrected BLEU scores of reconstructed results of the best models on
different input sizes. (correction scores in parenthesis)

In contrast, the performance degradation is much smaller for the Tree2Tree
model: 0.587 and 0.321 for the medium versus small and large versus small
subsets, respectively, on the corrected BLEU-4. Hence, the structural nature of
the Tree2Tree model scales better to large input sequences than the Seq2Seq
model in terms of reconstruction scores, even with a much smaller latent size.

An interesting observation is that the latent vector conveys relatively little
information in terms of BLEU scores. The correction scores make up a large part
of the total BLEU scores as presented in table 2. Hence, the BLEU scores are
largely determined by the models’ general knowledge of how C++ programs are
built up and not the specific content.

3.4 Generative results

To see how well autoencoders can generate reasonable samples from any point
in latent space that conform to the C++ syntax, we sample 1000 random latent
vectors from the prior distributionN (0, I) and input these vectors to the decoder
networks. Then, we compute the percentage of generated programs that compiles
and is thus also syntactically correct.

We employ two decoding strategies to test the generative capabilities of the
models: greedy decoding and sampling. The sampling strategy we apply is a
combination of top-k, nucleus, and temperature sampling [40]. We first use tem-
perature sampling to scale the logits to control the shape of the probability
distribution. Then, we filter the on the top-k samples, after which we filter to-
kens on their cumulative probability using nucleus sampling (top-p). Lastly, we
sample a token from the resulting distribution. The selected sampling hyper-
parameters for this experiment are: k = 40, p = 0.9, temperature = 0.7. The
results of the experiment are displayed in table 4.

The results from table 4 show similar trends as section 3.3. The general trend
is: the larger the model (in terms of latent size and hidden units), the higher the
compilation percentage. Moreover, greedy search during inference gives a higher
compilation percentage than sampling. This outcome is not surprising, as, with
greedy search, we always pick the label for which the model is most confident.
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Model Latent size Greedy search Sampling

Seq2Seq

10 0.0% 0.9%

50 38.5% 2.9%

100 62.1% 21.3%

150 58.0% 23.5%

300 60.6% 36.8%

500 67.5% 37.8%

800 78.2% 39.6%

Tree2Tree

10 29.6% 20.2%

50 22.6% 17.7%

100 30.3% 22.1%

150 26.9% 18.8%

300 23.4% 12.8%

500 25.6% 14.4%

800 4.1% 6.7%

Table 4: Generative results compilation percentage.

On the other hand, sampling gives a more varied output and may be useful for
searching similar programs in a vicinity of the latent space. The trade-off for a
more diverse output is thus a lower compilation ratio.

4 Conclusion

Our results indicate that Tree Variational Autoencoders have a significant advan-
tage over sequence-to-sequence models in low-dimensional latent spaces, achiev-
ing both a higher compilation rate and a higher reconstruction quality. In higher-
dimensional latent spaces seq2seq programs offer a higher compilation rate, but
based corrected BLEU scores indicate that this benefit is often achieved by sacri-
ficing reconstruction quality, even to the point of ignoring the input completely.

Overall, our findings support the initial hypothesis that structured autoen-
coder models are better suited for program synthesis than sequence-to-sequence
alternatives. We believe this result to be a significant step towards an autoencoder-
based foundation model for genetic programming and genetic improvement of
software.
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